Eklutna Fish \& Wildlife Program

 Alternatives Analysis - Meeting 3June 14, 2023

Agenda

9:00-9:15	Introduction
9:15-9:30	Downstream Migration Discussion
9:30-10:00	Lake/Tributary Habitat Discussion
10:00-11:30	Alternatives Analysis Results
11:30-11:45	Lunch
11:45-12:30	Geomorphology Modeling Results
12:30-1:00	Key Takeaways and Next Steps
1:00	Adjourn

Downstream Migration Attraction

II Downstream Migration - Dam Release

I. Downstream Migration - Floating Surface Collector

III Downstream Migration - Floating Surface Collector

$\begin{aligned} & \text { ID } \\ & \text { No. } \end{aligned}$	Name	Owner	Location	Reservoir Fluctuation (ft)	Screen Type	Fish Transport	Flow ($\mathrm{ft}^{3 / \mathrm{s}}$)
01	North Fork	PGE	Clackamas River, WA	10	FSC	Bypass Conduit	600 / 1,000
02	Lower Baker	PSE	Baker River, WA	30	FSC	Trap and Transport	500 / 1,000
03	Upper Baker	PSE	Baker River, WA	30	FSC	Trap and Transport	500 / 1,000
04	Cougar (in design)	USACE	S. Fork McKenzie River, OR	180	FSC	Trap and Transport	1000
05	Cougar	USACE	S. Fork McKenzie River, OR	180	PFFC	Trap and Transport	100
06	Swift FSC	PacifiCorp	Lewis River, WA	100	FSC	Trap and Transport	$600 / 800$
07	Cushman	Tacoma Power	Skokomish River, WA	20	FSC	Trap and Transport	250
08	Trail Bridge (design only)	EWEB	McKenzie River, OR	NA	FSS	Bypass Conduit	940
09	Round Butte	PGE	Deschutes River, OR	1-9	FSS	Trap and Transport	6,000
10	River Mill	PGE	Clackamas River, WA	2-6	FSS	Bypass Conduit	$500 / 700$
11	Soda Springs Fish Passage	PacifiCorp	North Umpqua River	14	FSS	Bypass Conduit	1,870
FSC $=$ Floating Surface Collector			FSS = Fish Screen Structure		PFFC = Portable Floating Fish Collector		

Lake/Tributary Spawning/Rearing Habitat

II East/West Forks Eklutna Creek

- Habitat in tributaries to Eklutna Lake including 13 tributaries to Eklutna Creek were surveyed for mesohabitat and fish presence in the summer and fall 2021
- Mainstem habitat in the East and West Forks of Eklutna Creek suitable for ocean-run spawning salmon was surveyed in September of 2022.

III Mainstem Spawning Habitat Survey Area

- Within the surveyed area, up to 4 acres of suitable spawning habitat for ocean run spawning salmon was documented.
- Additionally, 1.4 acre was identified in tributaries of the West Fork.

III West Fork Eklutna Creek Survey

III West Fork Eklutna Creek Survey

III West Fork Eklutna Creek Survey

II|Lake Sockeye Spawning Habitat

- We surveyed the suitability of lakeshore spawning habitat within accessible areas of the varial zone during the lowest lake level (829') in May of 2021. It was not feasible to perform similar habitat surveys in inundated areas of the lake.
- Habitat identified as suitable for spawning of Kokanee and Sockeye (~ 2 acres) included areas with slope, substrate size, and the presence of groundwater.
- Much of the remaining lakeshore is of steep slope (>40\%), very large cobble along the lakeside trail, and fine sediment (at tail of Eklutna Lake)

II Lake Sockeye Rearing Habitat

- 2021 and 2022 primary productivity study showed very low primary production in Eklutna Lake which is an indicator of poor fish production potential for the water body.
- Turbidity and associated limitation in light penetration is linked to low productivity. Turbidity in Eklutna Lake may have similar on Eklutna Lake as Skilak where ADFG has documented not only trends toward increasing turbidity with climate driven glacial melt, but associated decreases in sockeye salmon numbers.
- The 2017 Eklutna Lake Marine derived nutrients study indicated that historical runs likely did not exceed 10,000 salmon.
- "We found that a salmon run of up to $1000 /$ year, and potentially as many as $15000 /$ year, would be possible without noticeably altering the measured isotopic composition of the sediments in Eklutna Lake. Our results provide no evidence that such runs occurred, but do not preclude the possible existence of a relatively small sockeye fishery in Eklutna Lake before 1929"
- Kokanee in Eklutna Lake corroborate the conclusions of the primary productivity and turbidity studies that food availability is low resulting in undersized and lowfecundity fish.
- Eklutna Lake, in the condition under which it was studied in 2021 and 2022, is not supporting a healthy population of resident kokanee and is likely equally insufficient to support ocean-run fish at this time.

Alternatives Analysis Results

II Stakeholder Consultation

- Received ~36 total alternatives from the following entities:
- Native Village of Eklutna
- Alaska Department of Fish and Game (ADFG)
- Chugach State Park (ADNR)
- National Marine Fisheries Service (NMFS)
- U.S. Fish \& Wildlife Service (USFWS)
- Trout Unlimited
- The Conservation Fund
- Hydro Project Owners

II| Updates from May Meeting

Ratepayer Impacts:

Matanuska Electric:
1.12\% Energy Rate Increase / $\$ 1 \mathrm{M}$

Chugach Electric:
0.3\% Energy Rate Increase /\$1M - (Previously 1\%/\$1M)

Municipality of Anchorage:
. 03 mils / \$1M
(\$3 Increased Property Tax per \$/100k Property Value)

CAPEX TIER

- Times Interest Earned Ratio - 1.75x
- Multiplied on interest associated with Capex over life of project
- Part of ratepayer basis for utilities (not MOA)

Native Village of Eklutna

II| Native Village of Eklutna

Proposed PME Measures:

Flow Release Measure

- Replacement Dam w/ Fixed Wheel Gate \& Ladder (Measure P)

Upstream Passage

- Naturelike Entrance w/ Variable Exit Ladder

Downstream Passage

- Spill April / May / June

Other Improvements

- AWWU Bridge Construction
- Physical Habitat Improvements
- Full Lakeside Trail Improvements

II |Native Village of Eklutna - Flow Releases

Eklutna Water Volume (Acre-Ft)								
	Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
NVE Alt	262,456	95,501	24,670	139,616	2,287	$\mathbf{3 7 \%}$	$\mathbf{9 \%}$	$\mathbf{5 4 \%}$

Channel Maintenance Flow = 700 cfs -72 Hr - Annually

II| Native Village of Eklutna - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	65	69	$\mathbf{9 5 \%}$
Feb	65	53	$\mathbf{1 2 2 \%}$
Mar	65	43	$\mathbf{1 5 0 \%}$
Apr	300	58	$\mathbf{5 1 9 \%}$
May	300	201	$\mathbf{1 4 9 \%}$
Jun	300	752	$\mathbf{4 0 \%}$
Jul	350	1,077	$\mathbf{3 2 \%}$
Aug	350	941	$\mathbf{3 7 \%}$
Sep	150	638	$\mathbf{2 4 \%}$
Oct	150	284	$\mathbf{5 3 \%}$
Nov	108	118	$\mathbf{9 1 \%}$
Dec	65	90	$\mathbf{7 2 \%}$

II| Native Village of Eklutna - Cost Summary

CAPEX (\$M)	
Replacement Dam	\$113.3
Fish Exclusion Barrier	\$2.1
Physical Habitat Improvements	\$1.5
Lakeside Trail Improvements	\$3.0
AWWU Bridges	\$2.9
Total	\$122.9
O\&M (\$/Yr)	
Replacement Dam	\$299,000
Fish Exclusion Barrier	\$37,700
Total (\$/Yr)	\$336,700
Replacement Energy (\$/Yr)	
Replacement Energy (MWh)	99,341
Energy Cost (\$/kWh)	\$73
Total (\$/Yr)	\$7,265,000
Annualized Costs (\$/Yr)	
CAPEX TIER	\$11,352,000
CAPEX	\$7,503,000
O\&M	\$592,000
Replacement Energy	\$8,693,000
Total	\$20,637,000
Present Worth (\$)	
Present Value	\$338,000,000

Estimated Ratepayer/Taxpayer Impacts	
Chugach Electric Association	$\mathbf{4 . 0 \%}$
Matanuska Electric Association	$\mathbf{6 . 3 \%}$
Municipality of Anchorage (\$/100k)	$\$ 4.62$ / 0.046 mils

Carbon Emissions: 43,000 MTCO2eq

II| Native Village of Eklutna - Habitat Summary

NVE Regime - Spawning Habitat
■ Baseline ■ Eklutna River ■ Eklutna Lake

NVE Regime - Rearing Habitat
■ Baseline Eklutna River ■Eklutna Lake

Alaska Department of Fish \& Game

II ADFG

Proposed PME Measures:

Flow Release Measure

- Replacement Dam w/ Fixed Wheel Gate \& Ladder (Measure P);
- AWWU Portal Release (Measure C);

Other Improvements

- AWWU Bridge Construction
- Physical Habitat Improvements
- Partial Lakeside Trail Improvements

Upstream Passage

- Naturelike Entrance w/ Variable Exit Ladder (Measure P)
- None (Measure C)

Downstream Passage

- Spill in May (Measure P)
- None (Measure C)

Eklutna Water Volume (Acre-Ft)

II ADFG

Channel Maintenance Flow = $325 / 400 / 450$ cfs - 72 Hr 3 of 10 years

		Eklutna Water Volume (Acre-Ft)						
Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow	
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
Flow Level 2	262,456	207,663	24,670	30,420	350	$\mathbf{7 9 \%}$	$\mathbf{9 \%}$	$\mathbf{1 2 \%}$
Flow Level 3	262,456	201,071	24,670	37,194	427	$\mathbf{7 6 \%}$	$\mathbf{9 \%}$	$\mathbf{1 4 \%}$
Flow Level 4	262,456	194,653	24,670	43,612	481	$\mathbf{7 4 \%}$	$\mathbf{9 \%}$	$\mathbf{1 7 \%}$
FL 2 w/ Spill	262,456	190,645	24,670	46,473	536	$\mathbf{7 3 \%}$	$\mathbf{9 \%}$	$\mathbf{1 8 \%}$
FL3 w/ Spill	262,456	184,551	24,670	52,478	593	$\mathbf{7 1 \%}$	$\mathbf{9 \%}$	$\mathbf{2 0 \%}$
FL 4 w/ Spill	262,456	178,630	24,670	58,336	654	$\mathbf{6 8 \%}$	$\mathbf{9 \%}$	$\mathbf{2 2 \%}$

\qquad
\qquad

II ADFG - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	$31-39$	69	$\mathbf{4 5 \% - 5 7 \%}$
Feb	$31-39$	53	$\mathbf{5 8 \%}=\mathbf{7 4 \%}$
Mar	$31-39$	43	$\mathbf{7 2 \% - 9 1 \%}$
Apr	$31-39$	58	$\mathbf{5 3 \% - 6 7 \%}$
May*	$41-59$	201	$\mathbf{2 0 \% - 2 9 \%}$
Jun	$50-80$	752	$\mathbf{7 \% - 1 1 \%}$
Jul	$60-100$	1,077	$\mathbf{6 \% - 9 \%}$
Aug	$60-100$	941	$\mathbf{6 \% - 1 1 \%}$
Sep	$48-65$	638	$\mathbf{8 \% - 1 0 \%}$
Oct	$48-65$	284	$\mathbf{1 7 \% - 2 3 \%}$
Nov	$39-52$	118	$\mathbf{3 3 \% - 4 4 \%}$
Dec	$31-39$	90	$\mathbf{3 4 \% - 4 3 \%}$

*May - 300 cfs (149\% Inflow)

III ADFG - Replacement Dam Summary

Estimated Ratepayer/Taxpayer Impacts			
	FL 2 w/ Spill	FL 3 w/ Spill	FL 4 w/ Spill
Chugach Electric Association	$\mathbf{2 . 8 \%}$	$\mathbf{2 . 9 \%}$	$\mathbf{2 . 9 \%}$
Matanuska Electric Association	$\mathbf{3 . 9 \%}$	$\mathbf{4 . 0 \%}$	$\mathbf{4 . 2 \%}$
Municipality of Anchorage ($\$ / 100 \mathrm{k})$	$\$ 4.53 / 0.045$ mils	$\$ 4.53 / 0.045$ mils	$\$ 4.53 / 0.045$ mils

Carbon Emissions: 14,000-17,500 MTCO2eq

III ADFG - AWWU Portal Summary

CAPEX (\$M)	
AWWU Portal	$\$ 5.5$
Fixed Wheel Gate	$\$ 6.6$
Physical Habitat Improvements	$\$ 1.5$
Partial Lakeside Trail Improve.	$\$ 0.4$
AWWU Bridges	$\$ 2.9$
Total	$\$ 16.9$
$\mathbf{O \& M}(\$ / \mathbf{Y r})$	
AWWU Portal	$\$ 188,500$
Fixed Wheel Gate	$\$ 32,500$
Total $(\$ / \mathbf{Y r})$	$\$ 221,000$

Replacement Energy (\$/Yr)		
	FL 2 w/ Spill	FL 3 w/ Spill
Replacement Energy (MWh)	19,712	23,974
Energy Cost ($\$ / \mathrm{kWh}$)	\$73	\$73
Total (\$/Yr)	\$1,442,000	\$1,753,000
Annualized Costs (\$/Yr)		
	FL 2	FL3
CAPEX TIER	\$1,562,000	\$1,562,000
CAPEX	\$1,032,000	\$1,032,000
O\&M	\$388,000	\$388,000
Replacement Energy	\$1,725,000	\$2,098,000
Total	\$3,675,000	\$4,048,000
Present Worth (\$)		
	FL 2	FL 3
Present Value	\$60,000,000	\$66,000,000

Estimated Ratepayer/Taxpayer Impacts		
	FL 2	FL 3
Chugach Electric Association	0.7%	0.8%
Matanuska Electric Association	1.4%	1.6%
Munic. of Anchorage $(\$ / 100 \mathrm{k})$	$\$ 0.81 / 0.008$ mils	$\$ 0.81 / 0.008$ mils

Carbon Emissions: 8,500-12,000 MTCO2eq

III ADFG- Habitat Summary

ADFG Regime - Spawning Habitat
ADFG Regime - Rearing Habitat
■ Baseline ■Eklutna River ■Eklutna Lake
■ Baseline ■Eklutna River ■ Eklutna Lake

ADNR - State Parks

II ADNR - State Parks

Proposed PME Measures:
Flow Release Measure

- AWWU Portal (Measure C)

Upstream Passage

- None

Downstream Passage

- None

Other Improvements

- AWWU Bridge Construction
- Partial Lakeside Trail Improvements

IIIADNR

Eklutna Water Volume (Acre-Ft)

		Eklutna Water Volume (Acre-Ft)						
	Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
Flow Level $\mathbf{1}$	262,456	212,804	24,670	25,023	218	$\mathbf{8 1 \%}$	$\mathbf{9 \%}$	$\mathbf{1 0 \%}$
Flow Level $\mathbf{2}$	262,456	206,380	24,670	31,303	354	$\mathbf{7 9 \%}$	$\mathbf{9 \%}$	$\mathbf{1 2 \%}$
Flow Level $\mathbf{3}$	262,456	199,539	24,670	38,055	436	$\mathbf{7 6 \%}$	$\mathbf{9 \%}$	$\mathbf{1 5 \%}$

Channel Maintenance Flow = 200/325/400 cfs - $72 \mathrm{Hr}-3$ Years

II ADNR - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	27-35	69	39\% - 51\%
Feb	27-35	53	51\% - 66\%
Mar	27-35	43	63\% - 81\%
Apr	27-35	58	47\% - 60\%
May	34-50	201	17\% - 25\%
Jun	40-65	752	5\%-9\%
Jul	40-80	1,077	4\% - 7\%
Aug	40-80	941	4\% - 9\%
Sep	40-57	638	6\% - 9\%
Oct	40-57	284	14\% - 20\%
Nov	35-46	118	30\% - 39\%
Dec	27-35	90	30\% - 39\%

IIIADNR - Summary

CAPEX (\$M)	
AWWU Portal	$\$ 5.5$
Fixed Wheel Gate*	$\$ 6.6$
Partial Lakeside Trail Improve.	$\$ 0.4$
AWWU Bridges	$\$ 2.9$
Total	$\$ 15.4$

*Fixed Wheel Gate Excluded from FL1 Alternative

O\&M (\$/Yr)	
AWWU Portal	$\$ 188,500$
Fixed Wheel Gate*	$\$ 32,500$
Total (\$/Yr)	$\$ 221,000$

Replacement Energy (\$/Yr)			
	FL 1	FL 2	FL 3
Replacement Energy (MWh)	15,723	19,712	23,974
Energy Cost $(\$ / \mathrm{kWh})$	$\$ 73$	$\$ 73$	$\$ 73$
Total $(\mathbf{\$} / \mathbf{Y r})$	$\mathbf{\$ 1 , 1 5 0 , 0 0 0}$	$\mathbf{\$ 1 , 4 4 2 , 0 0 0}$	$\mathbf{\$ 1 , 7 5 3 , 0 0 0}$

Annualized Costs (\$/Yr)			
	FL 1	FL 2	FL 3
CAPEX TIER	\$819,000	\$1,426,000	\$1,426,000
CAPEX	\$541,000	\$943,000	\$943,000
O\&M	\$331,000	\$388,000	\$388,000
Replacement Energy	\$1,376,000	\$1,725,000	\$2,098,000
Total	\$2,526,000	\$3,539,000	\$3,912,000
Present Worth (\$)			
	FL 1	FL 2	FL 3
Present Value	\$41,000,000	\$58,000,000	\$64,000,000

Estimated Ratepayer/Taxpayer Impacts			
	FL 1	FL 2	FL 3
Chugach Electric Association	0.5%	0.7%	0.8%
Matanuska Electric Association	1.1%	1.4%	1.5%
Munic. of Anchorage ($\$ / 100 \mathrm{k})$	$\$ 0.50 / 0.005$ mils	$\$ 0.76 / 0.007$ mils	$\$ 0.76 / 0.007$ mils

Carbon Emissions: 7,000-10,000 MTCO2eq

IIIADNR - Habitat Summary

ADNR Regime - Spawning Habitat
■ Baseline ■Eklutna River ■Eklutna Lake

ADNR Regime - Rearing Habitat
■ Baseline ■Eklutna River ■ Eklutna Lake

National Marine Fisheries Service

II NMFS

Proposed PME Measures:

Flow Release Measure

- Replacement Dam w/ Fixed Wheel Gate \& Ladder (Measure P)
- Existing Dam Release w/ Fixed Wheel Gate - No Fish Passage (Measure A)*

Upstream Passage

- Naturelike Entrance w/ Variable Exit Ladder (Measure P)
- None (Measure A)

Downstream Passage

- Floating Surface Collector (Measure P)
- None (Measure A)

Other Improvements

- AWWU Bridge Construction
- Partial Lakeside Trail Improvements
- Physical Habitat Improvements

II NMFS

Eklutna Water Volume (Acre-Ft)

Eklutna Water Volume (Acre-Ft)								
	Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
FL 5 Modified	262,456	183,064	24,670	54,084	545	$\mathbf{7 0 \%}$	$\mathbf{9 \%}$	$\mathbf{2 1 \%}$
FL 6	262,456	177,836	24,670	59,258	599	$\mathbf{6 8 \%}$	$\mathbf{9 \%}$	$\mathbf{2 3 \%}$
Modified								

Channel Maintenance Flow = 500/550/600 cfs - $72 \mathrm{Hr}-3$ Years

II NMFS - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	50	69	$\mathbf{7 2 \%}$
Feb	50	53	$\mathbf{9 4 \%}$
Mar	50	43	$\mathbf{1 1 6 \%}$
Apr	50	58	$\mathbf{8 6 \%}$
May	$73-87$	201	$\mathbf{3 6 \% - 4 3 \%}$
Jun	$97-123$	752	$\mathbf{1 3 \% - 1 6 \%}$
Jul	$120-160$	1,077	$\mathbf{1 1 \% - 1 5 \%}$
Aug	$120-160$	941	$\mathbf{1 3 \% - \mathbf { 1 7 \% }}$
Sep	$73-90$	638	$\mathbf{1 1 \% - \mathbf { 1 4 \% }}$
Oct	$73-90$	284	$\mathbf{2 6 \% - \mathbf { 3 1 \% }}$
Nov	$62-70$	118	$\mathbf{5 3 \% - \mathbf { 6 0 \% }}$
Dec	50	90	$\mathbf{5 6 \%}$

III NMFS - Replacement Dam Summary

Estimated Ratepayer/Taxpayer Impacts			
	FL5 Modified	FL 6 Modified	FL 7
Chugach Electric Association	4.5%	4.6%	4.7%
Matanuska Electric Association	8.3%	8.4%	8.5%
Munic. of Anchorage $(\$ / 100 \mathrm{k})$	$\$ 8.05 / 0.081$ mils	$\$ 8.05 / 0.081$ mils	$\$ 8.05 / 0.081$ mils

Carbon Emissions: 16,000-19,000 MTCO2eq

III NMFS - Dam Release Summary

Estimated Ratepayer/Taxpayer Impacts			
	FL5 Modified	FL 6 Modified	FL 7
Chugach Electric Association	1.1%	1.2%	1.2%
Matanuska Electric Association	2.6%	2.7%	2.8%
Munic. of Anchorage $(\$ / 100 \mathrm{k})$	$\$ 1.13 / 0.011$ mils	$\$ 1.13 / 0.011$ mils	$\$ 1.13 / 0.011$ mils

Carbon Emissions: 19,000-22,000 MTCO2eq

II NMFS - Habitat Summary

NMFS Regime - Spawning Habitat
■ Baseline ■ Eklutna River ■ Eklutna Lake

NMFS Regime - Rearing Habitat
■ Baseline ■Eklutna River ■ Eklutna Lake

U.S. Fish \& Wildlife Service

II USFWS

Proposed PME Measures:

Flow Release Measure

- Replacement Dam w/ Fixed Wheel Gate \& Ladder (Measure P)
- Existing Dam with Fixed Wheel Gate and Variable Fish Ladder (Measure K)

Upstream Passage

- Naturelike Entrance w/ Variable Exit Ladder (Measure P)
- Variable Exit Fishway (Measure K)

Downstream Passage

- Floating Surface Collector
- Spill (April/May/June)
- Spill w/ Attractant Pumps (April/May/June) *

Other Improvements

- AWWU Bridge Construction
- Partial Lakeside Trail Improvements
- Physical Habitat Improvements

	Eklutna Water Volume (Acre-Ft)								
\cap TTNTMNTS		Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Powerhouse	AWWU	Instream Flow
	Baseline	262,456	238,444	24,670	0	0	91\%	9\%	0\%
	FL7-FSC	262,456	171,191	24,670	64,281	1,961	66\%	9\%	25\%
	FL7-Spill	262,456	128,448	24,670	107,025	1,961	49\%	9\%	41\%
	Alt 1 - FSC	262,456	153,370	24,670	82,053	1,961	59\%	9\%	32\%
	Alt 1 - Spill	262,456	113,651	24,670	121,772	1,961	44\%	9\%	47\%
	Alt 2 - Spill	262,456	114,087	24,670	121,554	1,743	44\%	9\%	47\%

Channel Maintenance Flow:
FL7 / Alt 1: 600 cfs - $72 \mathrm{Hr}-$ Annually
Alt 2: $\quad 700 \mathrm{cfs} / 72 \mathrm{hr} \mathrm{Y1} / 2+400 \mathrm{cfs} / 72 \mathrm{Hr} \mathrm{Y3} / 4 / 5,600 \mathrm{cfs} / 72 \mathrm{Hr} \mathrm{Y6}$ - Repeat 3/4/5/6

II USFWS - Flow Releases

Floating Surface Collector Alternatives

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	$50-75$	69	$\mathbf{7 2 \% - 1 0 8 \%}$
Feb	$50-75$	53	$\mathbf{9 4 \% - 1 4 2 \%}$
Mar	$50-75$	43	$\mathbf{1 1 6 \% - \mathbf { 1 7 4 \% }}$
Apr	$50-75$	58	$\mathbf{8 6 \% - 1 2 9 \%}$
May	$75-87$	201	$\mathbf{3 7 \% - 4 3 \%}$
Jun	$123-160$	752	$\mathbf{1 6 \% - 2 1 \%}$
Jul	160	1,077	$\mathbf{1 5 \%}$
Aug	160	941	$\mathbf{1 7 \%}$
Sep	$90-160$	638	$\mathbf{1 4 \% - 2 5 \%}$
Oct	$90-160$	284	$\mathbf{3 2 \% - 5 6 \%}$
Nov	$70-75$	118	$\mathbf{5 9 \% - 6 4 \%}$
Dec	$50-75$	90	$\mathbf{5 6 \% - 8 3 \%}$

Spill Alternatives			
Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	$50-75$	69	$\mathbf{7 2 \% - 1 0 8 \%}$
Feb	$50-75$	53	$\mathbf{9 4 \% - \mathbf { 1 4 2 \% }}$
Mar	$50-75$	43	$\mathbf{1 1 6 \% - \mathbf { 1 7 4 \% }}$
Apr	300	58	$\mathbf{5 1 7 \%}$
May	300	201	$\mathbf{1 4 9 \%}$
Jun	300	752	$\mathbf{4 0 \%}$
Jul	160	1,077	$\mathbf{1 5 \%}$
Aug	160	941	$\mathbf{1 7 \%}$
Sep	$90-160$	638	$\mathbf{1 4 \% - \mathbf { 2 5 \% }}$
Oct	$90-160$	284	$\mathbf{3 2 \% - 5 6 \%}$
Nov	$70-75$	118	$\mathbf{5 9 \% - 6 4 \%}$
Dec	$50-75$	90	$\mathbf{5 6 \% - 8 3 \%}$

III USFWS -
 Replacement Dam Summary

CAPEX (\$M)	
Replacement Dam	$\$ 113.3$
Fish Exclusion Barrier	$\$ 2.1$
Physical Habitat Improvements	$\$ 1.5$
Partial Lakeside Trail Improve.	$\$ 0.4$
AWWU Bridges	$\$ 2.9$
w/ Attraction Pumps at Dam	$\$ 38.4$
Floating Surface Collector	$\$ 57.6$
Total w/ Spill for Passage	$\$ 120.3$
Total w/ Attraction Pumps	$\$ 158.7$
Total w/ FSC	$\$ 177.8$
$\mathbf{Z Y}$ (
Replacement Dam	$\$ 299,000$
Fish Exclusion Barrier	$\$ 37,700$
Attraction Pumps at Dam	$\$ 1,326,000$
Floating Surface Collector	$\$ 1,500,200$
Total w/ Spill for Passage	$\$ 336,700$
Total w/ Attraction Pumps	$\$ 1,662,700$
Total w/ FSC	$\$ 1,836,900$

Carbon Emissions:
19,000-37,000 MTCO2eq

Replacement Energy (\$/Yr)								
	FL 7 FSC A	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill	FL7 w/ Pumps	Alt 1 w/ Pumps	Alt 2 w/ Pumps
Replacement Energy (MWh)	44,660	58,193	75,059	86,313	57,933	52,594	58,193	57,933
Energy Cost (\$/kWh)	\$73	\$73	\$73	\$73	\$73	\$73	\$73	\$73
Total (\$/Yr)	\$3,266,000	\$4,256,000 \$	\$5,514,000	\$6,341,000 \$	\$4,256,000	\$3,864,000	\$4,275,000	\$4,256,000
Annualized Costs (\$/Yr)								
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill	FL7 w/ Pumps	Alt 1 w/ Pumps	Alt 2 w/ Pumps
CAPEX TIER	\$16,433,000	\$16,433,000	0 \$11,114,000	\$11,114,000	\$11,114,000	\$14,666,000	\$14,666,000	\$14,666,000
CAPEX	\$10,861,000	\$10,861,000	\$7,345,000	\$7,345,000	\$7,345,000	\$9,693,000	\$9,693,000	\$9,693,000
O\&M	\$3,229,000	\$3,229,000	\$592,000	\$592,000	\$592,000	\$2,922,000	\$2,922,000	\$2,922,000
Replacement Energy	\$3,908,000	\$5,093,000	\$6,598,000	\$7,588,000	\$7,577,000	\$4,624,000	\$5,116,000	\$5,093,000
Total	\$23,570,000	\$24,755,000	\$18,304,000	\$19,294,000	\$19,283,000	\$22,212,000	\$22,704,000	\$22,681,000
Present Worth (\$)								
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill	FL7 w/ Pumps	Alt 1 w/ Pumps	Alt 2 w/ Pumps
Present Value	\$386,000,000	0 \$405,000,000	0 \$300,000,000	0 \$316,000,000	\$316,000,000	\$364,000,000	\$372,000,000	\$371,000,000
Estimated Ratepayer/Taxpayer Impacts								
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill	FL7 w/ Pumps	Alt 1 w/ Pumps	Alt $2 \mathrm{w} / \mathrm{Pumps}$
Chugach Electric Association	4.5\%	4.8\%	3.5\%	3.7\%	3.7\%	4.3\%	4.4\%	4.4\%
Matanuska Electric Association	8.2\%	8.7\%	5.4\%	5.8\%	5.8\%	7.9\%	8.1\%	8.0\%
Munic. of Anchorage (\$/100k)	\$8.05	\$8.05	\$4.53	\$4.53	\$4.53	\$7.21	\$7.21	\$7.21

■CAPEX TIER ■ Replacement Energy (\$/Yr) ■ O\&M
\$26,000,000
\$24,000,000 \$22,000,000 \$22,000,000
§ $\$ 20,000,000$
in \$18,000,000苟 \$16,000,000 - $\$ 14,000,000$ © \$12,000,000 \$10,000,000 Ton
\$10,000,000
$\$ 8,000,000$
 $\$ 6,000,000$
$\$ 4,000,000$ \$2,000,000

FSC

New Dam FL
Spill

New Dam A
Spill

New Dam Alt
Spill
w Dam FL
Pumps

New Dam Alt w/ Pumps

New Dam Alt 2 w/ Pumps

II USFWS Variable Exit Fish Ladder Summary

CAPEX (\$M)			
Variable Exit Fishway	$\$ 17.6$		
Fixed Wheel Gate	$\$ 6.6$		
Physical Habitat Improvements	$\$ 1.5$		
Partial Lakeside Trail Improve.	$\$ 0.4$		
AWWU Bridges	$\$ 2.9$		
Fish Exclusion Barrier	$\$ 2.1$		
Floating Surface Collector	$\$ 57.6$		
Total w/ Spill for Passage	$\$ 31.1$		
Total w/ FSC	$\$ 88.6$		
O\&M (\$/Yr)			
Variable Exit Fishway	$\$ 555,100$		
Fixed Wheel Gate	$\$ 32,500$		
Fish Exclusion Barrier	$\$ 37,700$		
Floating Surface Collector	$\$ 1,500,200$		
Total w/ Spill for Passage	$\$ 625,300$		
Total w/ FSC	$\mathbf{\$ 2 , 1 2 5 , 5 0 0}$		

Carbon Emissions:
23,000 - 39,000 MTCO2eq

Replacement Energy (\$/Yr)					
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill
Replacement Energy (MWh)	52,594	62,802	81,044	89,786	89,660
Energy Cost (\$/kWh)	\$73	\$73	\$73	\$73	\$73
Total (\$/Yr)	\$3,266,000	\$4,614,000	\$5,954,000	\$6,596,000	\$6,587,000
Annualized Costs (\$/Yr)					
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill
CAPEX TIER	\$8,190,000	\$8,190,000	\$2,871,000	\$2,871,000	\$2,871,000
CAPEX	\$5,413,000	\$5,413,000	\$1,898,000	\$1,898,000	\$1,898,000
O\&M	\$3,736,000	\$3,736,000	\$1,099,000	\$1,099,000	\$1,099,000
Replacement Energy	\$4,624,000	\$5,521,000	\$7,125,000	\$7,893,000	\$7,882,000
Total	\$16,550,000	\$17,447,000	\$11,095,000	\$11,863,000	\$11,852,000
Present Worth (\$)					
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill
Present Value	\$271,000,000	\$286,000,000	\$182,000,000	\$194,000,000	\$194,000,000
Estimated Ratepayer/Taxpayer Impacts					
	FL 7 FSC	Alt 1 FSC	FL 7 Spill	Alt 1 Spill	Alt 2 Spill
Chugach Electric Assoc.	3.2\%	3.4\%	2.1\%	2.3\%	2.3\%
Matanuska Electric Assoc.	7.6\%	7.9\%	4.6\%	4.9\%	4.9\%
Munic. of Anchorage (\$/100k)	\$5.23	\$5.23	\$1.71	\$1.71	\$1.71

■CAPEX TIER ■ Replacement Energy (\$/Yr) ■O\&M

III USFWS - Habitat Summary Replacement Dam

USFWS Regimes - Spawning Habitat
■ Baseline ■Eklutna River ■Eklutna Lake

III USFWS - Habitat Summary Variable Exit Fish Ladder

USFWS Regimes - Spawning Habitat
■ Baseline ■Eklutna River ■Eklutna Lake

USFWS Regimes - Rearing Habitat
■ Baseline ■ Eklutna River ■ Eklutna Lake

Trout Unlimited

III Trout Unlimited

Proposed PME Measures:

Flow Release Measure

- Existing Dam with Fixed Wheel Gate and Variable Fish Ladder (Measure K)*

Upstream Passage

- Variable Exit Fishway (Measure K)

Other Improvements

- AWWU Bridge Construction
- Partial Lakeside Trail Improvements
- Physical Habitat Improvements

Downstream Passage

- Spill (April/May/June)

Channel Maintenance Flows

- 800 cfs Y1 Flushing Flow w/ No Maintenance Flow
- 800 cfs Y1 Flushing Flow w/ 300 cfs Maintenance Flow 3 out of every 10 years
- 800 cfs Y1 Flushing Flow w/ 400 cfs Maintenance Flow 3 out of every 10 years
- 800 cfs Y1 Flushing Flow w/ 525 cfs Maintenance Flow 3 out of every 10 years
- 800 cfs Y1 Flushing Flow w/ 700 cfs Maintenance Flow 3 out of every 10 years
- 700 cfs Y1 Flushing Flow w/ No Maintenance Flow
- 700 cfs Y1 Flushing Flow w/ 240 cfs Maintenance Flow 3 out of every 10 years
- 700 cfs Y1 Flushing Flow w/ 320 cfs Maintenance Flow 3 out of every 10 years

I] Trout
 Unlimited

Eklutna Water Volume (Acre-Ft)								
	Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
TU FL7	262,456	135,522	24,670	101,387	$0-349$	$\mathbf{5 2 \%}$	$\mathbf{9 \%}$	$\mathbf{3 9 \%}$
TU Alt 1	262,456	113,869	24,670	121,522	$0-436$	$\mathbf{4 4 \%}$	$\mathbf{9 \%}$	$\mathbf{4 7 \%}$
TU Alt 2	262,456	82,803	24,670	153,450	$0-762$	$\mathbf{3 2 \%}$	$\mathbf{9 \%}$	$\mathbf{5 9 \%}$

IIITU - Flow Releases

Spill Alternatives			
Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	$50-65$	69	$\mathbf{7 2 \% - 9 4 \%}$
Feb	$50-65$	53	$\mathbf{9 4 \% - 1 2 3 \%}$
Mar	$50-65$	43	$\mathbf{1 1 6 \% - 1 5 1 \%}$
Apr	300	58	$\mathbf{5 1 7 \%}$
May	300	201	$\mathbf{1 4 9 \%}$
Jun	$300-350$	752	$\mathbf{4 0 \% - 4 7 \%}$
Jul	$160-350$	1,077	$\mathbf{1 5 \% - 3 2 \%}$
Aug	$160-350$	941	$\mathbf{1 7 \% - 3 7 \%}$
Sep	$90-350$	638	$\mathbf{1 4 \% - 5 5 \%}$
Oct	$90-208$	284	$\mathbf{3 2 \% - 7 3 \%}$
Nov	$61-70$	118	$\mathbf{5 2 \% - 5 9 \%}$
Dec	$50-65$	90	$\mathbf{5 6 \% - 7 2 \%}$

II|TU - Variable Exit Ladder Summary

CAPEX (\$M)			
Variable Exit Fishway		\$17.6	
Fixed Wheel Gate		\$6.6	
Physical Habitat Improvements		\$1.5	
Partial Lakeside Trail Improve.		\$0.4	
AWWU Bridges		\$2.9	
Fish Exclusion Barrier		\$2.1	
Total		\$31.1	
O\&M (\$/Yr)			
Variable Exit Fishway		\$555,100	
Fixed Wheel Gate		\$32,500	
Fish Exclusion Barrier		\$37,700	
Total (\$/Yr)		\$625,300	
Replacement Energy (\$/Yr)			
	FL 7 w/ Spill	Alt 1 w/ Spill	Alt 2 w/ Spill
Replacement Energy (MWh)	79,887	89,723	109,231
Energy Cost (\$/kWh)	\$73	\$73	\$73
Total (\$/Yr)	\$5,869,154	\$6,591,796	\$8,025,011
CAPEX TIER	\$2,871,000	\$2,871,000	\$2,871,000
CAPEX	\$1,898,000	\$1,898,000	\$1,898,000
O\&M	\$1,099,000	\$1,099,000	\$1,099,000
Replacement Energy	\$7,022,912	\$7,887,611	\$9,602,567
Total	\$10,992,912	\$11,857,611	\$13,572,567
Present Worth (\$)			
	FL 7 w/ Spill	Alt 1 w/ Spill	Alt 2 w/ Spill
Present Value	\$180,000,000	\$194,000,000	\$222,000,000

Estimated Ratepayer/Taxpayer Impacts			
	FL $7 \mathbf{w} /$ Spill	Alt $1 \mathbf{w} /$ Spill	Alt $2 \mathbf{w} /$ Spill
Chugach Electric Association	2.1%	2.3%	2.6%
Matanuska Electric Association	4.6%	5.0%	5.7%
Munic. of Anchorage $(\$ / 100 \mathrm{k})$	$\$ 1.71 / 0.017$ mils	$\$ 1.71 / 0.017$ mils	$\$ 1.71 / 0.017$ mils

Carbon Emissions: 34,000-48,000 MTCO2eq

II| Trout Unlimited - Habitat Summary

TU Regimes - Spawning Habitat
■ Baseline Eklutna River ■ Eklutna Lake

Hydro Project Owners CEA/MEA/MOA

II| Hydro Project Owners

Proposed PME Measures:
Flow Release Measure

- AWWU Portal (Measure C)

Upstream Passage

- None

Downstream Passage

- None

Other Improvements

- AWWU Bridge Construction
- Partial Lakeside Trail Improvements

II CEA MEA MOA

Eklutna Water Volume (Acre-Ft)

		Eklutna Water Volume (Acre-Ft)						
Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Hydropower	Public Water Supply	Instream Flow	
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
Flow Level $\mathbf{1}$	262,456	212,804	24,670	25,023	291	$\mathbf{8 1 \%}$	$\mathbf{9 \%}$	$\mathbf{1 0 \%}$
Flow Level $\mathbf{2}$	262,456	206,380	24,670	31,303	350	$\mathbf{7 9 \%}$	$\mathbf{9 \%}$	$\mathbf{1 2 \%}$
Flow Level $\mathbf{3}$	262,456	199,539	24,670	38,055	427	$\mathbf{7 6 \%}$	$\mathbf{9 \%}$	$\mathbf{1 5 \%}$

Channel Maintenance Flow $=200 / 325 / 400$ cfs - $72 \mathrm{Hr}-3$ of 10 Years

II|CEA/MEA/MOA - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	27-35	69	39\% - 51\%
Feb	27-35	53	51\% - 66\%
Mar	27-35	43	63\% - 81\%
Apr	27-35	58	47\% - 60\%
May	34-50	201	17\% - 25\%
Jun	40-65	752	5\%-9\%
Jul	40-80	1,077	4\% - 7\%
Aug	40-80	941	4\% - 9\%
Sep	40-57	638	6\% - 9\%
Oct	40-57	284	14\% - 20\%
Nov	35-46	118	30\% - 39\%
Dec	27-35	90	30\% - 39\%

III CEA/MEA/MOA - Summary

CAPEX (\$M)	
AWWU Portal	$\$ 5.5$
Fixed Wheel Gate*	$\$ 6.6$
Partial Lakeside Trail Improve.	$\$ 0.4$
AWWU Bridges	$\$ 2.9$
Total	$\$ 15.4$

*Fixed Wheel Gate Excluded from FL1 Alternative

O\&M (\$/Yr)	
AWWU Portal	$\$ 188,500$
Fixed Wheel Gate*	$\$ 32,500$
Total (\$/Yr)	$\$ 221,000$

Replacement Energy (\$/Yr)			
	FL 1	FL 2	FL 3
Replacement Energy (MWh)	15,723	19,712	23,974
Energy Cost $(\mathbf{\$} / \mathrm{kWh})$	$\$ 73$	$\$ 73$	$\$ 73$
Total $(\mathbf{\$} / \mathrm{Yr})$	$\mathbf{\$ 1 , 1 5 0 , 0 0 0}$	$\mathbf{\$ 1 , 4 4 2 , 0 0 0}$	$\mathbf{\$ 1 , 7 5 3 , 0 0 0}$

Annualized Costs (\$/Yr)			
	FL 1	FL 2	FL 3
CAPEX TIER	$\$ 819,000$	$\$ 1,426,000$	$\$ 1,426,000$
CAPEX	$\$ 541,000$	$\$ 943,000$	$\$ 943,000$
O\&M	$\$ 331,000$	$\$ 388,000$	$\$ 388,000$
Replacement Energy	$\$ 1,376,000$	$\$ 1,725,000$	$\$ 2,098,000$
Total	$\$ 2,526,000$	$\$ 3,539,000$	$\$ 3,912,000$
Present Worth (\$)			
FL 1			FL 2
Present Value	$\$ 41,000,000$	$\$ 58,000,000$	$\mathbf{F 6 4}, \mathbf{0 0 0} \mathbf{0 0 0 0}$

Estimated Ratepayer/Taxpayer Impacts			
	FL 1	FL 2	FL 3
Chugach Electric Association	0.5%	0.7%	0.8%
Matanuska Electric Association	1.1%	1.4%	1.5%
Munic. of Anchorage (\$/100k)	$\$ 0.50 / 0.005$ mils	$\$ 0.76 / 0.007$ mils	$\$ 0.76 / 0.007$ mils

Carbon Emissions: 7,000-10,000 MTCO2eq

III CEA/MEA/MOA - Habitat Summary

CEA/MEA/MOA Regime - Spawning Habitat
 ■ Baseline ■ Eklutna River ■Eklutna Lake

CEA/MEA/MOA Regime - Rearing Habitat

■ Baseline Eklutna River ■ Eklutna Lake

The Conservation Fund

III The Conservation Fund

Proposed PME Measures:
Flow Release Measure

- Replacement Dam w/ Fixed Wheel Gate \& Ladder (Measure P)

Upstream Passage

- Naturelike Entrance w/ Variable Exit Ladder (Measure P)

Downstream Passage

- Spill (April/May/June)

Other Improvements

- None*

II TCF

Eklutna Water Volume (Acre-Ft)

Eklutna Water Volume (Acre-Ft)								
	Inflows	Powerhouse Water Usage	AWWU Water Usage	Instream Flow Habitat Usage	Peak Water Releases (Gated)	Powerhouse	AWWU	Instream Flow
Baseline	262,456	238,444	24,670	0	0	$\mathbf{9 1 \%}$	$\mathbf{9 \%}$	$\mathbf{0 \%}$
TCF Alt	262,456	120,797	24,670	116,072	654	$\mathbf{4 6 \%}$	$\mathbf{9 \%}$	$\mathbf{4 4 \%}$

Channel Maintenance Flow = 1500 cfs Flush Y1 w/ 600 cfs - $72 \mathrm{Hr}-3$ of 10 years

IITCF - Flow Releases

Month	Flow Release (cfs)	Average Monthly Inflow	Percent of Inflow
Jan	60	69	$\mathbf{8 7 \%}$
Feb	60	53	$\mathbf{1 1 3 \%}$
Mar	60	43	$\mathbf{1 4 0 \%}$
Apr	300	58	$\mathbf{5 1 7 \%}$
May	300	201	$\mathbf{1 4 9 \%}$
Jun	300	752	$\mathbf{4 0 \%}$
Jul	200	1,077	$\mathbf{1 9 \%}$
Aug	200	941	$\mathbf{2 1 \%}$
Sep	200	638	$\mathbf{3 1 \%}$
Oct	60	284	$\mathbf{2 1 \%}$
Nov	60	118	$\mathbf{5 1 \%}$
Dec	60	90	$\mathbf{6 7 \%}$

III TCF - Summary

CAPEX (\$M)		
Replacement Dam	$\$ 113.3$	
Total	$\$ 113.3$	
O\&M (\$/Yr)		
Replacement Dam	$\$ 299,000$	
Total (\$/Yr)	$\$ 299,000$	
Annualized Costs (\$Yr)		
Replacement Energy (MWh)	TCF Alt	
Energy Cost (\$/kWh)	81,632	
Total (\$/Yr)	$\$ 73$	
TCF Alt		
CAPEX TIER	$\$ 10,474,000$	
CAPEX	$\$ 6,922,000$	
O\&M	$\$ 592,000$	
Replacement Energy	$\$ 7,144,000$	
Total	$\$ 18,210,000$	
Present Worth (\$)		
Present Value	$\mathbf{\$ 2 9 8 , 0 0 0 , 0 0 0}$	

Estimated Ratepayer/Taxpayer Impacts	
Chugach Electric Association	$\mathbf{3 . 5 \%}$
Matanuska Electric Association	$\mathbf{5 . 5 \%}$
Munic. of Anchorage $(\$ / 100 \mathrm{k})$	$\$ 4.29$ / 0.043 mils

```
$26,000,000
    $24,000,000
    $22,000,000
    $20,000,000
I $18,000,000
N $16,000,000
~ّ0
% $12,000,000
~
< $8,000,000
    $6,000,000
    $4,000,000
    $2,000,000
    $0
```


Carbon Emissions: 35,000 MTCO2eq

II|TCF - Habitat Summary

TCF Regime - Spawning Habitat

■ Baseline ■Eklutna River ■Eklutna Lake

Total CAPEX*

*Excludes costs associated with upgrades at MEA EGS plant for winter shutdown of powerhouse

II Total CAPEX

Annual O\&M Costs*

[^0]
II Annual O\&M Costs

Energy Losses

III Replacement Energy Cost

Total Annualized Costs
35-Years

III 35 -Yr Annualized Costs

Input Parameters

- Discount Rate - 5\%
- Annual Increase in O\&M Costs - 3\%
- Annual Increase in Energy Costs - 1\%
- Carbon Emissions - 0.43 $\mathrm{MTCO}_{2} \mathrm{eq} / \mathrm{MWh}$

Utility Pricing

- CEA: \$64.61/MWh
- MEA: \$88.48/MWh

Input Pricing

- \$73.13/MWh

Ownership
Matanuska Electric:

Chugach Electric:
Municipality of Anchorage: 64.29\% of Energy, CAPEX, O\&M

Ratepayer Impacts:

Matanuska Electric:
1.12\% Energy Rate Increase /\$1M

Chugach Electric:
0.3\% Energy Rate Increase /\$1M

Municipality of Anchorage:
.03 mils / \$1M
(\$3 Increased Property Tax per \$/100k Property Value)

III 35 -Yr Annualized Costs

Habitat Improvements

III Chinook Spawning Habitat Gains

II |Coho Spawning Habitat Gains

III Sockeye Spawning Habitat Gains

III Chinook Rearing Habitat Gains

III Coho Rearing Habitat Gains

Cost Effectiveness Model Results

II | Cost Effectiveness - Chinook Spawning Habitat

II | Cost Effectiveness - Chinook Spawning Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal - Flow Level 1
- Owner/ADNR Alternative
- Annual Costs - $\mathbf{\$ 2 . 5 \mathrm { M }}$
- Habitat Gains - 1.5 Acres
- \$1.7M/Acre
- AWWU Portal - Flow Level 2
- Owner/ADNR Alternative
- Annual Costs - $\$ 3.5 \mathrm{M}$
- Habitat Gains - 1.5 Acres
- \$2.3M/Acre
- AWWU Portal - Flow Level 3
- Owner/ADNR Alternative
- Annual Costs - $\$ 3.9 \mathrm{M}$
- Habitat Gains - 1.6 Acres
- \$2.5M/Acre
- Dam Release - Flow Level 5 Modified
- NMFS Alternative
- Annual Costs $-\$ 5.8 \mathrm{M}$
- Habitat Gains - 1.9 Acres
- \$3.1M/Acre
- Dam Release - Flow Level 6 Modified
- NMFS Alternative
- Annual Costs - $\mathbf{\$ 6 . 1} \mathrm{M}$
- Habitat Gains - 1.9 Acres
- $\$ 3.2 \mathrm{M} /$ Acre
- Dam Release - Flow Level 7
- NMFS Alternative
- Annual Costs - $\$ 6.4 \mathrm{M}$
- Habitat Gains - 2.0 Acres
- \$3.2M/Acre
- Variable Exit Fishway - Flow Level 7
- Trout Unlimited Alternative
- Annual Costs - $\$ 10.0 \mathrm{M}$
- Habitat Gains - 4.9 Acres
- \$2.1M/Acre

III Cost Effectiveness - Coho Spawning Habitat

II Cost Effectiveness - Coho Spawning Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal - Flow Level 1
- Owner/ADNR Alternative
- Annual Costs - $\$ 2.5 \mathrm{M}$
- Habitat Gains - 1.6 Acres
- \$1.6M/Yr/Acre
- AWWU Portal - Flow Level 2
- Owner/ADNR Alternative
- Annual Costs - $\$ 3.5 \mathrm{M}$
- Habitat Gains - 1.6 Acres
- \$2.2M/Yr/Acre
- Dam Release - Flow Level 5 Modified
- NMFS Alternative
- Annual Costs - $\$ 5.8 \mathrm{M}$
- Habitat Gains - 2.3 Acres
- \$2.5M/Yr/Acre
- Variable Exit Fishway - Flow Level 7
- Trout Unlimited Alternative
- Annual Costs - $\$ 10.0 \mathrm{M}$
- Habitat Gains - 5.2 Acres
- \$1.9M/Yr/Acre

III Cost Effectiveness - Sockeye Spawning Habitat

II] Cost Effectiveness - Sockeye Spawning Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal - Flow Level 1
- Owner Alternative
- Annual Costs - $\mathbf{\$ 2 . 5 \mathrm { M }}$
- Habitat Gains - 1.2 Acres
- \$2.0M/Acre
- Dam Release - Flow Level 5 Modified
- NMFS Alternative
- Annual Costs - $\$ 5.8 \mathrm{M}$
- Habitat Gains - 1.5 Acres
- \$3.8M/Acre
- Variable Exit Fishway - Flow Level 7
- Trout Unlimited Alternative
- Annual Costs - $\$ 10.0 \mathrm{M}$
- Habitat Gains - 4.2 Acres
- \$2.4M/Acre

III Cost Effectiveness - Chinook Rearing Habitat

II Cost Effectiveness - Chinook Rearing Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal - Flow Level 1 / 2 / 3
- Owner/ADNR/ADFG Alternative
- Annual Costs - $\$ 2.5 / \$ 3.7 \mathrm{M} / \$ 4.1 \mathrm{M}$
- Habitat Gains - 6.3 / 7.2 / 8.1 Acres
- \$400k - \$480k/Acre
- Variable Exit Fishway - Alt 2
- Trout Unlimited Alternative
- Annual Costs - \$12.6M
- Habitat Gains - 22.5 Acres
- \$560k/Acre
- Dam Release - Flow Level 5 / 6 / 7
- NMFS Alternative
- Annual Costs - $\$ 5.8 \mathrm{M} / \$ 6.1 \mathrm{M} / \$ 6.4 \mathrm{M}$
- Habitat Gains - 13.3 / 13.7 / 14.3 Acres
- \$440k - \$444k/Acre
- Variable Exit Fishway - FL 7 / Alt 1
- Trout Unlimited Alternative
- Annual Costs - \$10.0M / \$10.9M
- Habitat Gains - 18.2 / 19.7 Acres
- \$550k/Acre

III Cost Effectiveness - Coho Rearing Habitat

III Cost Effectiveness - Coho Rearing Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal - Flow Level 1 / 2 / 3
- Owner/ADNR/ADFG Alternative
- Annual Costs - $\$ 2.5 / \$ 3.7 \mathrm{M} / \$ 4.0 \mathrm{M}$
- Habitat Gains - 9.9 / 11.6 / 12.7 Acres
- $\$ 256 \mathrm{k}$ - $\$ 318 \mathrm{k} /$ Acre
- Variable Exit Fishway - Alt 2
- Trout Unlimited Alternative
- Annual Costs - \$12.6M
- Habitat Gains - 33.0 Acres
- \$380k/Acre
- Dam Release - Flow Level 5 / 6 / 7 Modified
- NMFS Alternative
- Annual Costs - $\$ 5.8 \mathrm{M} / \$ 6.1 \mathrm{M} / \$ 6.4 \mathrm{M}$
- Habitat Gains - 18.9 / 19.7 / 20.5 Acres
- \$306k - \$310k/Acre
- Variable Exit Fishway - FL 7 / Alt 1
- Trout Unlimited Alternative
- Annual Costs - \$10.0M / \$10.9M
- Habitat Gains - 26.5 / 28.8 Acres
- $\$ 380 \mathrm{k} /$ Acre

Lunch

Geomorphic Considerations

II Geomorphic Considerations

- Effects of flow regime on substrate, channel maintenance, riparian
- HEC-RAS 1-D model results (substrate, cross section/profile changes)
- 23 different flow regimes
- End of 35 years (and 10 years)
- Primary variations among alternatives modeled
- Magnitude of peak (and daily) flows
- Frequency of peak (annual or every 3 years)
- Shape of peak flow hydrograph (72 hours full peak vs. shaped peak)
- Spawning-sized substrate
- Coho/sockeye 16-64mm
- Chinook 64-128 mm

III Unique Channel Maintenance Flows

Run number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Name	Flow Level 1	Flow Level 2	Flow Level 3	Flow Level 4	Flow Level 5	Flow Level 6	Flow Level 7	TCF	NVE	NMFS alt 1	NMFS alt 2	USFWS 1	$\begin{gathered} \text { USFWS } \\ 2 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { TU Alt } \\ \text { VE-1A } \end{array}$	$\begin{array}{\|l\|l} \hline \text { TU Alt } \\ \text { VE-1B } \end{array}$	$\begin{array}{\|c\|} \hline \text { TU Alt } \\ \text { VE-1D } \end{array}$	$\begin{aligned} & \text { TU Alt } \\ & \text { VE-2A } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { TU Alt } \\ \text { VE-2B } \end{array}$	$\begin{array}{\|c\|} \text { TU Alt } \\ \text { VE-2C } \end{array}$	$\begin{aligned} & \hline \text { TU Alt } \\ & \text { VE- } \\ & \text { FL7A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TU Alt } \\ & \text { VE- } \\ & \text { FL7B } \\ & \hline \end{aligned}$	$\begin{gathered} \text { TU Alt } \\ \text { VE- } \\ \text { FL7C } \end{gathered}$	USFWS2 VAR
Peak	220	325	400	450	500	550	600	1500	700	500	550	600	600	800 once then 400	800 once then 300	$\begin{gathered} 800 \\ \text { once } \end{gathered}$	800 once then 700	800 once then 525	800 once	700 once then 320	700 once then 240	700 once	$\begin{aligned} & \text { Variable } \\ & 400-600 \end{aligned}$
Freq/ Shaped or 72 hrs?	3 years shaped		every year for 72 hours	3 years for 72 hours	3 years for 72 hours		every year for 72 hours	3 years shaped	3 years shaped	shaped	3 years shaped	3 years shaped	shaped	3 years shaped	3 years shaped	shaped							
Peak: Mean Annual Flow Ratio	6.5	7.8	7.9	7.6	7.3	7.1	7	14.8	4.6	6.9	7	7	5.3	3.3	2.5	n/a	3.8	2.9	n/a	3.2	2.4	n/a	Variable

II |All Alternatives (after 35 years)

II Fish Survey Reaches

III All Alternatives (after 35 years)

Median Grain Size by Fish Reach by Alternative

III All Alternatives (after 35 years)

Percent of Transects in Grain Size Category By Alternative

II|Frequency of Peak of Flows (annual vs. every 3 years after 35 years of flows)

- Compare runs 7 (FL7, peak 600 cfs every 3 years) and 12 (FL7, peak 600 cfs every year)

II Shape of Peak Flow Hydrograph

- Compare:
- Runs 5 to 10 (FL5, 500 cfs)
- Runs 6 to 11 (FL 6, 550 cfs)

II Shape of Peak Flow Hydrograph (after 35 years)
 Median Grain Size by Fish Reach by Alternative

III Short-term vs. Long-term Changes

Percent of Transects $\mathbf{1 6 - 1 2 8 ~ m m ~ a n d ~ A v e r a g e ~ D 5 0 ~}(\mathrm{mm})$ after 10 and 35 years

II| Geomorphic Considerations Summary

- All (22) flow regimes analyzed provide spawning-sized gravel areas ($16-128 \mathrm{~mm}$)
- Subtle differences among alternatives (70 to 80 percent of transects suitable)
- Confined (canyon) reaches = generally larger sized sediment
- Higher percentage of transects best for coho/sockeye (16-64mm) than Chinook (64128mm)
- Flow magnitude: generally higher flows/peaks =coarser sediment
- Shaped vs. 72-hour peak: higher percentage of suitable spawning transects for 72hour peaks suggest peak flow part of shaped hydrographs could be longer (need to explore more)
- Frequency of peaks (every year vs every 3 years):
- Every year slightly coarser, but overall similar percent suitable for spawning
- Some differences among reaches (confined reaches)
- Short term (10 years) vs long term (35 years): few differences among alternatives after 10 years, suggests trends take time to develop

III Channel Maintenance Flow Cost Summary

Run number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Name	Flow Level 1	Flow Level 2	Flow Level 3	Flow Level 4	Flow Level 5	Flow Level 6	Flow Level 7	TCF	NVE	NMFS alt 1	NMFS alt 2	$\begin{gathered} \text { USFWS } \\ 1 \end{gathered}$	$\begin{gathered} \text { USFWS } \\ 2 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { TU Alt } \\ \text { VE-1A } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { TU Alt } \\ \text { VE-1B } \end{array}$	$\left\|\begin{array}{c} \text { TU Alt } \\ \text { VE-1D } \end{array}\right\|$	$\begin{aligned} & \text { TU Alt } \\ & \text { VE-2A } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TU Alt } \\ \text { VE-2B } \end{array}$	$\left\|\begin{array}{\|c\|} \text { TU Alt } \\ \text { VE-2C } \end{array}\right\|$	$\begin{gathered} \hline \text { TU Alt } \\ \text { VE- } \\ \text { FL7A } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { TU Alt } \\ \text { VE- } \\ \text { FL7B } \\ \hline \end{array}$	$\begin{gathered} \hline \text { TU Alt } \\ \text { VE- } \\ \text { FL7C } \end{gathered}$	$\begin{gathered} \text { USFWS2 } \\ \text { VAR } \end{gathered}$
Peak	220	325	400	450	500	550	600	1500	700	500	550	600	600	800 once then 400	800 once then 300	$\begin{gathered} 800 \\ \text { once } \end{gathered}$	800 once then 700	800 once then 525	$\begin{gathered} 800 \\ \text { once } \end{gathered}$	700 once then 320	700 once then 240	700 once	$\begin{aligned} & \text { Variable } \\ & 400-600 \end{aligned}$
Freq/ Shaped or 72 hrs?	3 years shaped	every year shaped	every year for 72 hours	3 years for 72 hours	3 years for 72 hours	every year for 72 hours	every year for 72	3 years shaped	3 years shaped	shaped	3 years shaped	3 years shaped	shaped	3 years shaped	3 years shaped	shaped	every year for 72 hours						
Peak: Mean Annual Flow Ratio	6.5	7.8	7.9	7.6	7.3	7.1	7	14.8	4.6	6.9	7	7	5.3	3.3	2.5	n/a	3.8	2.9	n/a	3.2	2.4	n/a	Variable
Average Annual Release (Acre-Ft)	291	350	427	481	537	593	654	4902	2287	537	593	1961	1961	502	401	75	837	647	75	414	327	65	1743
Annual Average Cost	\$13,716	\$16,497	\$20,126	\$22,671	\$25,311	\$27,950	\$30,825	\$231,047	\$107,794	\$25,311	\$27,950	\$92,428	\$92,428	\$23,662	\$18,917	\$3,520	\$39,451	\$30,480	\$3,520	\$19,514	\$15,397	\$3,080	\$82,153
Present Worth (\$)	\$224,582	\$270,116	\$329,541	\$371,216	\$414,435	\$457,653	\$504,730	\$3,783,162	\$1,765,013	\$414,435	\$457,653	\$1,513,419	\$1,513,419	\$387,438	\$309,747	\$57,639	\$645,977	\$499,085	\$57,639	\$319,516	\$25,115	\$50,429	\$1,345,176

II Geomorphic Recommendations for Peak Flows

- Also consider other non-substrate size geomorphic work/values in natural systems (spring-fed vs. disturbance-regime systems)
- Sediment source erosion, sediment sorting
- Disturbance in low flow vs. high flow channel areas
- Riparian conditions
- Remove intruding vegetation
- Unvegetated fine sediment needed for cottonwood regeneration
- Recommendations for peak flow regime
- Peak flow approx. 7 times mean annual flow - mimic rainfall peak in similar AK rivers
- Provide peak 3 out of 9 years to allow for natural variability of incoming flows
- Shaped hydrograph with long tail - rising vs. descending limb transport patterns
- Consider an initial longer peak (maybe 7 days?) to help re-set channel (based on test flow release dynamics)

Key Takeaways and Next Steps

II Key Takeaways

- Under current conditions, increasing flows beyond Flow Level 7 have reduce spawning habitat for Chinook and Coho in Eklutna River and may promote detrimental anchor ice in winter
- Replacement dam and floating surface collector have significant annualized costs and associated ratepayer impacts
- Existing Dam Release with or without Fish Ladder requires winter shutdown of powerhouse
- Fixed Wheel Gate is the best means of achieving channel maintenance flows for anything above Flow Level 1
- AWWU Portal Valve flow release options provides $2 x-3 x$ the spawning and rearing habitat compared to baseline conditions (in 11 of 12 miles...) - achieve 87-93\% of available habitat...
- Floating Surface Collector would not be effective (icing) for passing out-migrating juveniles and has significant costs
- Spill for downstream passage may have reduced effectiveness due to low attraction velocities in Eklutna Lake
- Eklutna Lake studies have shown low primary productivity, high levels of turbidity, and a kokanee population of significantly smaller size and lower fecundity than has been documented in other systems-all indications that Eklutna Lake in its current state is not likely to support a healthy population of ocean-run sockeye. Like Skilak Lake, where ADFG has documented an increase in lake turbidity with glacial melt and associated declines in sockeye population/ primary productivity, Eklutna Lake may be on a similar trajectory toward decreasing habitat quality resulting from similar effects of climate change.

II] Next Steps

- After Meeting 3 (June)
- Provide preferred alternative(s) by June $30^{\text {th }}$
- Meeting 4 (July)
- Discuss Positive/Negative Impacts to Water Supply, Wetlands, Wildlife, Recreation, Cultural Resources
- Initiate discussion regarding appropriate monitoring program and potential adaptive management
- Meeting 5 (August)
- Continue discussing appropriate monitoring program and potential adaptive management
- Outline Draft Fish and Wildlife Program

McMillen

[^0]: *Excludes costs associated with Adaptive Management

